

Update from Consultant Team

Neches Regional Flood Planning Group

February 23, 2022

Agenda

- · Task 10 Update
 - Submission on Adopted Final 2023 Neches Regional Flood Plan
- · Task 12 Update
 - City of Tyler Master Drainage Plan
 - City of Jasper Master Drainage Plan
- · Update on Budget
 - Approval for Technical Consultant to submit written request to TWDB to redirect funds to effort for Tasks 12 and 13.

1 2

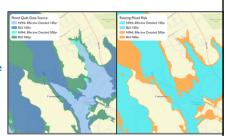
Task 10 Update

- Final 2023 Regional Flood Plan submitted to TWDB on 1/10/2023
 - Volume 1: 314 pages
 - Volume 2: 4,019 pages (Virtual Copy)
 - Volume 2: 1,535 pages (Hard Copy)
- Receipt of Final RFP acknowledged by TWDB on January 11, 2023

3

Final RFP Major Accomplishments

- Compiled and Processed Significant Amount of Flood Data
 - Developed regionwide datasets useful for flood management
 - Existing Flood Infrastructure
 - Ongoing/Proposed Flood Mitigation Projects
 - Critical Facilities and Infrastructure
 - Flood Exposure/Social Vulnerability
 - Developed Interactive GIS
 Dashboard accessible to public



Interactive GIS Dashboard accessible through nechesfloodplanning.org

Final RFP Major Accomplishments

- Developed Regionwide Flood Hazard
 - Full regionwide coverage of riverine, coastal, and local flood hazard
 - Developed regionwide flood hazard for both existing and future conditions
 - Identified and incorporated additional flood prone areas
 - Laid the foundation for future cycles of flood planning

Final RFP Major Accomplishments

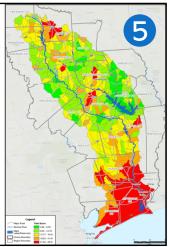
 Identified and Recommended Actions to Reduce Flood Risk and Improve Regionwide Understanding of Flood Hazard

Flood Mitigation Action	Number of Recommended Actions	Total Flood Mitigation Action Cost
FME	157	\$89,445,825
FMS	147	\$175,036,700
FMP	5	\$1,111,720,866
Total	309	\$1,376,203,391

5

Statewide Comparison Final 2023 Regional Flood Plans Final 2023 Regional Flood Plans FMPs FMSs FMEs FINAL 2023 Regional Flood Plans FMPs FMSs FMEs

Task 12 Objective


6

- To perform, within the RFPG's resources and the time available, a portion of currently recommended FMEs to identify additional FMPs for inclusion in the amended regional flood plan due July 14, 2023. Implementing these select FMEs includes the following:
 - Evaluate flood risks in areas with currently limited flood risk data
 - Evaluate flood risk reduction solutions, including feasibility studies
 - Preliminary engineering needed to identify, evaluate, and recommend additional potentially feasible FMPs
- The primary function of each recommended FMP must be flood risk reduction to life and property, and they must include quantifiable flood risk reduction benefits.
- The RFPG ultimately directs the work conducted under Task 12
 - The Technical Consultant team can help craft criteria to balance the desired outcomes of Task 12

Task 12 FME Mitigation Need Analysis

- Utilize Task 4A Needs Assessment as initial ranking
 - FMEs that intersect areas of high flood mitigation need
- Intersected 156 recommended FMEs with results of the Needs Analysis
 - 50 FMEs identified within areas of high need
- RFPG ranked FMEs in September 21st meeting
 - 7 Primary FMEs
 - 5 Secondary FMEs
 - 38 Not Recommended FMEs

FME Name	Description	Sponsor	FME Cost
Crane Bayou Channel Improvements*		Jefferson County Drainage District 7	\$100,000
Main A Channel Improvements*		Jefferson County Drainage District 7	\$100,000
Upper Johns Gulley Upgrade Drainage Channel*		Jefferson County Drainage District 7	\$100,000
Hardin County SE Area Drainage System	H&H study to identify alternatives for developing a large drainage system to drain Lumberton directly into the Neches River, instead of Pine Island Bayou.	Hardin County	\$1,250,00
City of Tyler Master Drainage Plan	Perform H&H modeling to identify and define flood risk, develop conceptual alternatives to reduce flood risk, develop OPCC for conceptual alternatives, and rank projects. Conceptual alternatives should evaluate feasibility of nature based solutions.		\$2,200,00
Bridge City Drainage Outfall Improvemen Project	tImprove and extend three major drainage ditches and extend a neighborhood outfall to reduce structural flooding in residences within the area.	City of Bridge City	\$200,000
City of Jasper Master Drainage Plan	Perform H&H modeling to identify and define flood risk, develop conceptual alternatives to reduce flood risk, develop OPCC for conceptual alternatives, and rank projects. Conceptual alternatives should evaluate feasibility of nature based solutions.		\$440,000

9

Crane Bayou Channel Improvements

• FME ID: 051000124

• Sponsor: Jefferson County Drainage District 7

- H&H Study to identify alternatives for Crane Bayou Channel
- Modeling effort to be conducted by JCDD7

Main A Channel Improvements

FME ID: 051000118

 Sponsor: Jefferson County Drainage District 7

 H&H study to identify alternative for Main A Channel

 Modeling effort to be conducted by JCDD7

2

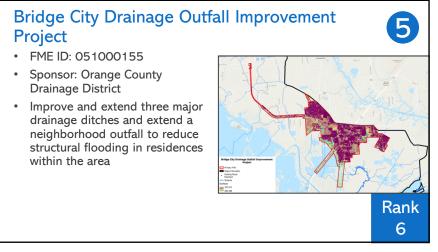
Upper Johns Gulley Upgrade Drainage Channel

FME ID: 051000112

Sponsor: Jefferson County
Drainage District 7

H&H study to identify
alternatives for Upper Johns
Gulley drainage improvements

Modeling effort to be conducted
by JCDD7


Hardin County SE Area Drainage System
FME ID: 051000090
Sponsor: Hardin County
H&H study to identify alternative for developing a large drainage system to drain Lumberton directly into the Neches River instead of Pine Island Bayou
Coordinating with JCDD6 FIF team on modeling results

Rank

13

24

City of Tyler Master Drainage Plan • FME ID: 051000058 • Sponsor: City of Tyler • Perform H&H modeling to identify and define flood risk, develop conceptual alternatives to reduce flood risk, develop OPCC for conceptual alternatives, and rank projects. Rank 4

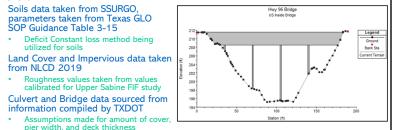
City of Jasper Master Drainage Plan

5

- FME ID: 051000052
- Sponsor: City of Jasper
- · Perform H&H modeling to identify and define flood risk, develop conceptual alternatives to reduce flood risk, develop OPCC for conceptual alternatives, and rank projects.

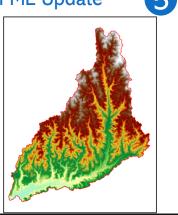
Modeling Methodology - Hydrology

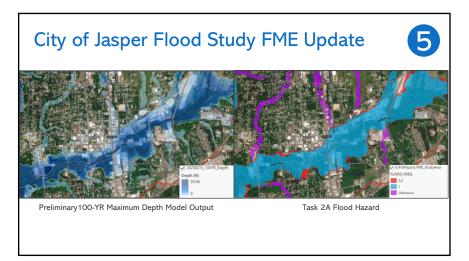
- Hydrology modeling done in HEC-HMS 4.10 and HEC-RAS
 - 100-YR 24-HR Atlas-14 rainfall being utilized
 - Clark Unit Hydrograph being utilized to correlate with practices established by Lower Sabine FIF
 - Losses accounted for in HEC-RAS 6.3.1

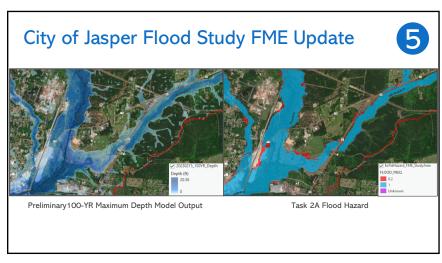

Duration		Average recurrence interval (years)										
COLABOR	1	2	5	10	25	50	100	200	500	1000		
5-min	0.489 (0.370-0.646)	0.563 (0.432-0.741)	0.689 (0.526-0.907)	0.790 (0.593-1.05)	0.926 (0.672-1.27)	1.03 (0.725-1.45)	1.13 (0.776-1.63)	1.23 (0.626-1.63)	1,37 (0.888-2.11)	1,47 (0.932-2.3		
10-min	0.777 (0.588-1.03)	0.896 (0.688-1.18)	1,10 (0.837-1.44)	1.26 (0.946-1.68)	1.48 (1.07-2.03)	1,64 (1.16-2.31)	1.80 (1.24-2.61)	1.96 (1.32-2.91)	2.17 (1.41-3.34)	2.32 (1.47-3.67		
15-min	0.983 (0.744-1.30)	1.13 (0.868-1.49)	1.38 (1.05-1.02)	1.58 (1.19-2.11)	1.85 (1.34-2.53)	2.05 (1.45-2.09)	2.24 (1.55-3.25)	(1.64-3.64)	2.72 (1.77-4.19)	2.92		
30-min	1.40 (1.06-1.84)	1.60 (1.23-2.11)	1.95 (1.49-2.57)	2.23 (1.67-2.97)	2.60 (1.88-3.56)	(2.03-4.04)	3.14 (2.17-4.55)	3.43 (2.31-5.10)	3.81 (2.48-5.88)	4,12		
60-min	1.83 (1.39-2.42)	2.11 (1.62-2.78)	2.58 (1.97-3.40)	2.96 (2.22-3.95)	3.47 (2.51-4.75)	3.84 (2.71-5.41)	4.22 (2.91-6.12)	4.63 (3.11-6.89)	5.19 (3.37-8.01)	5.64 (3.57-8.91		
2-hr	2.24 (1.71-2.93)	(2.03-3.41)	3.27 (2.51-4.26)	3.79 (2.07-5.01)	4.51 (3.29-6.10)	5.04 (3.50-7.01)	5.58 (3.87-6.01)	6.19 (4.10-9.12)	7.06 (4.61-10.8)	7.76		
3-hr	2.47 (1.90-3.22)	2.94 (2.26-3.79)	3.70 (2.85-4.78)	4.32 (3.29-5.68)	5.19 (3.80-6.98)	5.83 (4.16-5.07)	6.51 (4.53-9.28)	7.27 (4.93-10.6)	8.37 (5.45-12.7) 10.9 (7.14-16.3) 13.8 (9.12-29.5)	9.28 (5.91-14.4 12.2 (7.77-18.6 15.6 (10.0-23.6		
6-hr	2.89 (2.24-3.73)	3.50 (2.72-4.44)	(3.47-5.71)	5.28 (4.05-6.87)	6.43 (4.74-8.57)	7.31 (5.24-10.0)	8.25 (5.77-11.6)	9.32 (6.35-13.5)				
12-hr	3.33 (2.60-4.26)	4.09 (3.19-5.11)	5.27 (4.13-6.67)	6.30 (4.86-8.11)	7.78 (5.79-10.3)	8.96 (6.49-12.2)	10.3 (7.21-14.3)	11.7				
24 hr	3.84 (3.01-4.05)	4.76 (3.72-5.85)	6.17 (4.86-7.72)	7.43 (5.78-9.46)	9.27 (6.97-12.2)	10.8 (7.87-14.5)	12.5 (8.83-17.2)	14.4 (9.87-29.3)	17.1 (11.3-25-0)	19.4		
2-day	4,46 (3.53-5.58)	5.56 (4.38-6.74)	7.22 (5.74-8.94)	8.72 (6.84-11.0)	10.9 (8.29-14.2)	12.8 (9.40-17.0)	14.8 (10.6-20.2)	17.1	20.5 (13.6-29.6)	23.3 (15.0-34.3		
3-day	4.90 (3.90-4.09)	6.11 (4.83-7.36)	7.91 (6.32-9.74)	9.55 (7.53-12.0)	12.0 (9.12-15-5)	14.0 (10.3-18.5)	16.2 (11.6-22.0)	18.8 (13.0-26.0)	22.4 (14.9-32.1)	25.5 (16.5-37.1		
4-day	5.24 (4.10-6.49)	6.51 (5.16-7.81)	8,41 (6.74-10.3)	10.1 (8.02-12.7)	12.7 (9.69-16-3)	14.8 (11.0-19.5)	17.2 (12.3-23.2)	19.8 (13.8-27.4)	23.7 (15.8-33.8)	27.0 (17.5-39.2		
7-day	6.01 (4.83-7.38)	7.39 (5.91-8.82)	9.46 (7.63-11.5)	11.3 (9.03-14.0)	14.1 (10.8-18.0)	16.4 (12.2-21.5)	19.0 (13.7-25.4)	21.9 (15.3-29.9)	26.1 (17.5-38.9)	29.7 (19.3-42.8		
10-day	6.67 (5.39-6.16)	8.13 (6.54-9.67)	10.3 (0.30-12.5)	12.3 (9.05-15.2)	15.2 (11.7-19.3)	17.7 (13.2-22.9)	20.3 (14.7-27.0)	23.3 (16.3-31.6)	27.7 (10.6-30.0)	31.3		
20-day	8.84 (7.20-10.7)	10.5 (8.55-12.4)	13.0 (10.6-15.6)	15.2 (12.2-18.5)	18.3 (14.2-23.0)	20.9 (15.7-26.8)	23.6 (17.1-31.0)	26.6 (18.7-35.6)	30.8 (20.8-42.5)	34.2 (22.3-48.2		
30-day	10.7 (8.77-12.9)	12.4 (10.3-14.8)	15.2 (12.5-18.2)	17.5 (14.2-21.2)	20.8 (16.2-25-8)	23.3 (17.5-29.7)	26.0 (15.9-33.6)	28.8 (20.3-35.4)	32.8 (22.2-45.0)	35.9 (23.6-50.4		
45-day	13.5 (11.1-16.2)	15.3 (12.0-18.3)	18.4 (15.2-21.9)	20.8 (16.9-25.1)	24.1 (18.7-29.6)	26.5 (19.9-33.4)	28.9 (21.1-37.3)	31.5 (22.3-41.7)	35.2 (23.9-47.9)	38.1 (25.0-53.0		
60-day	16.1 (13.3-19.2)	18.0 (15.1-21.5)	21.2 (17.7-25.2)	23.7 (19.4-28.4)	26.9 (21.0-32.9)	29.1 (22.0-36.5)	31.3 (22.9-40.2)	33.7 (23.9-44.4)	37.1 (25.2-50.3)	39.8 (26.2-55.0		
Number	in parenthesis ar ce intervali will be	e PF estimates at	pper bound for less	ounds of the 90% o	confidence interval	The probability th	at precipitation frei ids are not checke	quency estimates i d against probable	for a given duratio maximum precipit	e and average lation (PMP)		

17 18

Modeling Methodology - Hydraulics


- Hydraulic modeling done in HEC-RÁS 6.3.1
- Soils data taken from SSURGO, parameters taken from Texas GLO SOP Guidance Table 3-15
 - Deficit Constant loss method being utilized for soils
 - from NLCD 2019
 - Roughness values taken from values calibrated for Upper Sabine FIF study
- · Culvert and Bridge data sourced from information compiled by TXDOT
 - Assumptions made for amount of cover pier width, and deck thickness




City of Jasper Flood Study FME Update

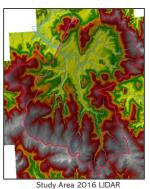
Model Development

- Study Area: Sandy Creek Watershed
 - Boundary created using HUC12 Boundaries from RFP effort
- Land Cover taken from NLCD 2019 and USGS Soils data (SSURGO)
- Precipitation data taken from NOAA Atlas-14
 - Analyzed Existing Conditions using 24-HR 100-YR storm

21 22

City of Jasper Flood Study FME Update

- · Primarily examining portion of Sandy Creek that intersects City of Jasper boundary
 - Channel Improvements
 - **Detention Pond**
- Next Steps
 - Evaluation of alternative projects for feasibility
 - Proposed conditions model development


Preliminary100-YR Maximum Depth Model Output

City of Tyler Flood Study FME Update

Model Development

- Study Area: Upper Black Fork Creek Watershed
 - · Boundaries updated based on 2016 LIDAR
- · Landcover developed from City of Tyler Future Land Use and USGS Soils data
 - Manning's assigned by USACE Table 2-1
 - Curve number assigned
- · NOAA Atlas 14 Rain-on-Grid
 - 10-, 25-, and 100-year events
- · Refinements for breaklines, roughness, and leaky cells

City of Tyler Flood Study FME Update

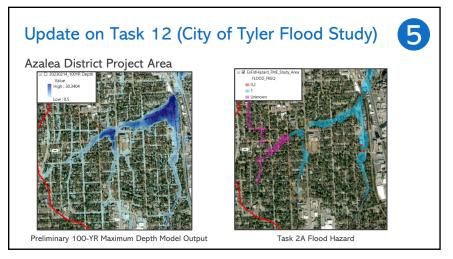
Preliminary 100-YR Maximum Depth Model Output

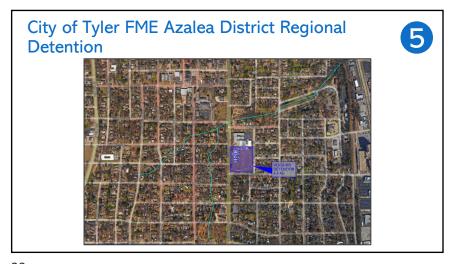
City of Tyler Consultation

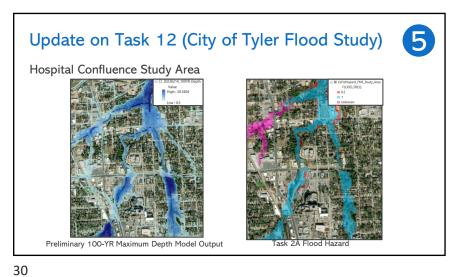
- Met with City staff in November to discuss potential projects
 - Natural Channel Improvements and Regional Detention

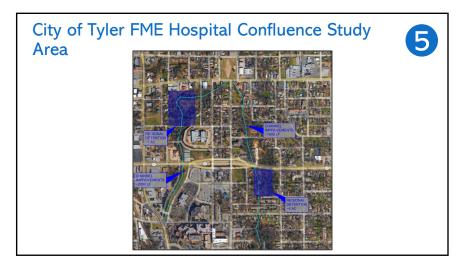
Next Steps

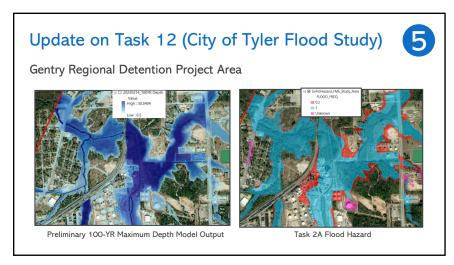
- Evaluation of alternative projects for feasibility
- Proposed conditions model development


City of Tyler Flood Study FME Update Pinkerton Project Area Preliminary 100-YR Maximum Depth Model Output Task 2A Flood Hazard


25 26

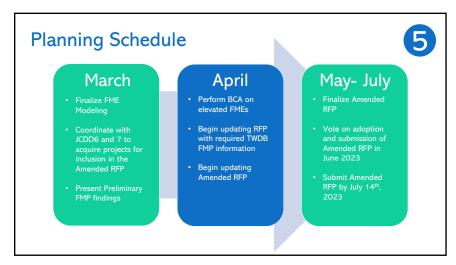

City of Tyler FME Pinkerton Project Area





City of Tyler FME Gentry Road Regional Detention

33


- Coordination ongoing with JCDD6 FIF team to acquire projects to be included in the Amended RFP
 - Project list currently in development; focus on projects including channel improvements and construction of new alignments/detention ponds
- Projects located throughout extent of study
 - Taylors Bayou

34

- Hillebrandt Bayou
- Pine Island Bayou
- Incorporation of FMPs require TWDB to approve use of Task 12 funds

D		ı,	L. J. C.						5		
l	Task		Original Budget		Revised Budget		Amount Changed	% Change			
	1	\$	57,445.00	\$	57,399.75	\$	(45.25)	- 0.08%			
	2a	\$	114,890.00	\$	140,886.84	\$	25,996.84	22.63%			
	2b	\$	114,890.00	\$	132,300.52	\$	17,410.52	15.15%			
	3a	\$	22,978.00	\$	22,856.28	\$	(121.72)	- 0.53%	1		
	3b	\$	11,489.00	\$	10,546.04	\$	(942.96)	- 8.21%			
	4a	\$	34,467.00	\$	33,605.42	\$	(861.58)	- 2.50%			
	4b	\$	172,335.00	\$	167,566.14	\$	(4,768.86)	- 2.77%			
	4c	\$	22,978.00	\$	29,990.44	\$	7,012.44	30.52%			
	5	\$	229,780.00	\$	162,068.18	\$	(67,711.82)	- 29.47%			
	6a	\$	45,956.00	\$	41,404.32	\$	(4,551.68)	- 9.90%			
	6b	\$	11,489.00	\$	7,464.82	\$	(4,024.18)	- 35.03%	1		
	7	\$	11,489.00	\$	11,998.30	\$	509.30	4.43%			
	8	\$	11,489.00	\$	11,392.65	\$	(96.35)	- 0.84%			
	9	\$	22,978.00	\$	21,922.69	\$	(1,055.31)	- 4.59%			
	10	\$	195,347.00	\$	234,393.71	\$	39,046.71	19.99%			
	11	\$	96,465.00	\$	56,447.01	\$	(40,017.99)	- 41.48%			
ĺ	12	\$	385,860.00	\$	385,860.00	\$	-	-			
	13	\$	160,775.00	\$	194,996.89	\$	34,221.89	21.29%			
	Total	\$	1,723,100.00	\$	1,723,100.00	\$	-	-			

